Integral equation $u(t)=f(t)+a\int_0^t u(s)ds\quad t\geq 0$
Integral equation $u(t)=f(t)+a\int_0^t u(s)ds\quad t\geq 0$
Let $a\in R$ e $f\colon [0,1]\to R$ a continous function. Solve the
integral equation $u(t)=f(t)+a\int_0^t u(s)ds\quad t\geq 0$ and find an
explicit formula for the solution. Thank you
No comments:
Post a Comment